Source code for MDAnalysis.lib.pkdtree
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
PeriodicKDTree --- :mod:`MDAnalysis.lib.pkdtree`
================================================
This module contains a class to allow searches on a KDTree involving periodic
boundary conditions.
"""
import itertools
import numpy as np
from scipy.spatial import cKDTree
from ._cutil import unique_int_1d
from ._augment import augment_coordinates, undo_augment
from .util import unique_rows
from MDAnalysis.lib.distances import apply_PBC
import numpy.typing as npt
from typing import Optional, ClassVar
__all__ = [
    'PeriodicKDTree'
]
[docs]class PeriodicKDTree(object):
    """Wrapper around :class:`scipy.spatial.cKDTree`
    Creates an object which can handle periodic as well as
    non periodic boundary condtions depending on the parameters
    provided while constructing the tree.
    To enable periodic boundary conditions, box dimensions must be
    provided. Periodic Boundary conditions are implemented by creating
    duplicates of the particles which are within the specified cutoff
    distance from the boundary. These duplicates along with the
    original particle coordinates are used with the cKDTree without
    any special treatment due to PBC beyond this point.  The final
    results after any operation with duplicate particle indices can be
    traced back to the original particle using the
    :func:`MDAnalysis.lib.distances.undo_augment` function.
    """
    def __init__(self, box: Optional[npt.ArrayLike] = None, leafsize: int = 10) -> None:
        """
        Parameters
        ----------
        box : array-like or ``None``, optional, default ``None``
          Simulation cell dimensions in the form of
          :attr:`MDAnalysis.trajectory.timestep.Timestep.dimensions` when
          periodic boundary conditions should be taken into account for
          the calculation of contacts.
        leafsize : int (optional)
          Number of entries in leafs of the KDTree. If you suffer poor
          performance you can play around with this number. Increasing the
          `leafsize` will speed up the construction of the KDTree but
          slow down the search.
        """
        self.leafsize = leafsize
        self.dim = 3  # 3D systems
        self.box = box
        self._built = False
        self.cutoff: Optional[float] = None
    @property
    def pbc(self):
        """Flag to indicate the presence of periodic boundaries.
        - ``True`` if PBC are taken into account
        - ``False`` if no unitcell dimension is available.
        This is a managed attribute and can only be read.
        """
        return self.box is not None
[docs]    def set_coords(self, coords: npt.ArrayLike, cutoff: Optional[float] = None) -> None:
        """Constructs KDTree from the coordinates
        Wrapping of coordinates to the primary unit cell is enforced
        before any distance evaluations. If periodic boundary conditions
        are enabled, then duplicate particles are generated in the
        vicinity of the box. An additional array `mapping` is also
        generated which can be later used to trace the origin of
        duplicate particle coordinates.
        For non-periodic calculations, cutoff should not be provided
        the parameter is only required for periodic calculations.
        Parameters
        ----------
        coords: array_like
          Coordinate array of shape ``(N, 3)`` for N atoms.
        cutoff: float
          Specified cutoff distance to create duplicate images
          Typically equivalent to the desired search radius
          or the maximum of the desired cutoff radius. Relevant images
          corresponding to every atom which lies
          within ``cutoff`` distance from either of the box boundary
          will be generated.
        See Also
        --------
        MDAnalysis.lib.distances.augment_coordinates
        """
        # set coords dtype to float32
        # augment coordinates will work only with float32
        coords = np.asarray(coords, dtype=np.float32)
        # If no cutoff distance is provided but PBC aware
        if self.pbc:
            self.cutoff = cutoff
            if cutoff is None:
                raise RuntimeError('Provide a cutoff distance'
                                   ' with tree.set_coords(...)')
            # Bring the coordinates in the central cell
            self.coords = apply_PBC(coords, self.box)
            # generate duplicate images
            self.aug, self.mapping = augment_coordinates(self.coords,
                                                         self.box,
                                                         cutoff)
            # Images + coords
            self.all_coords = np.concatenate([self.coords, self.aug])
            self.ckdt = cKDTree(self.all_coords, leafsize=self.leafsize)
        else:
            # if cutoff distance is provided for non PBC calculations
            if cutoff is not None:
                raise RuntimeError('Donot provide cutoff distance for'
                                   ' non PBC aware calculations')
            self.coords = coords
            self.ckdt = cKDTree(self.coords, self.leafsize)
        self._built = True
[docs]    def search(self, centers: npt.ArrayLike, radius: float) -> npt.NDArray:
        """Search all points within radius from centers and their periodic images.
        All the centers coordinates are wrapped around the central cell
        to enable distance evaluations from points in the tree
        and their images.
        Parameters
        ----------
        centers: array_like (N,3)
          coordinate array to search for neighbors
        radius: float
          maximum distance to search for neighbors.
        """
        if not self._built:
            raise RuntimeError('Unbuilt tree. Run tree.set_coords(...)')
        centers = np.asarray(centers)
        if centers.shape == (self.dim, ):
            centers = centers.reshape((1, self.dim))
        # Sanity check
        if self.pbc:
            if self.cutoff is None:
                raise ValueError(
                    "Cutoff needs to be provided when working with PBC.")
            if self.cutoff < radius:
                raise RuntimeError('Set cutoff greater or equal to the radius.')
            # Bring all query points to the central cell
            wrapped_centers = apply_PBC(centers, self.box)
            indices = list(self.ckdt.query_ball_point(wrapped_centers,
                                                      radius))
            self._indices = np.array(list(
                                     itertools.chain.from_iterable(indices)),
                                     dtype=np.intp)
            if self._indices.size > 0:
                self._indices = undo_augment(self._indices,
                                             self.mapping,
                                             len(self.coords))
        else:
            wrapped_centers = np.asarray(centers)
            indices = list(self.ckdt.query_ball_point(wrapped_centers,
                                                      radius))
            self._indices = np.array(list(
                                     itertools.chain.from_iterable(indices)),
                                     dtype=np.intp)
        self._indices = np.asarray(unique_int_1d(self._indices))
        return self._indices
[docs]    def get_indices(self) -> npt.NDArray:
        """Return the neighbors from the last query.
        Returns
        ------
        indices : NDArray
          neighbors for the last query points and search radius
        """
        return self._indices
[docs]    def search_pairs(self, radius: float) -> npt.NDArray:
        """Search all the pairs within a specified radius
        Parameters
        ----------
        radius : float
          Maximum distance between pairs of coordinates
        Returns
        -------
        pairs : array
          Indices of all the pairs which are within the specified radius
        """
        if not self._built:
            raise RuntimeError(' Unbuilt Tree. Run tree.set_coords(...)')
        if self.pbc:
            if self.cutoff is None:
                raise ValueError(
                    "Cutoff needs to be provided when working with PBC.")
            if self.cutoff < radius:
                raise RuntimeError('Set cutoff greater or equal to the radius.')
        pairs = np.array(list(self.ckdt.query_pairs(radius)), dtype=np.intp)
        if self.pbc:
            if len(pairs) > 1:
                pairs[:, 0] = undo_augment(pairs[:, 0], self.mapping,
                                           len(self.coords))
                pairs[:, 1] = undo_augment(pairs[:, 1], self.mapping,
                                           len(self.coords))
        if pairs.size > 0:
            # First sort the pairs then pick the unique pairs
            pairs = np.sort(pairs, axis=1)
            pairs = unique_rows(pairs)
        return pairs
[docs]    def search_tree(self, centers: npt.ArrayLike, radius: float) -> np.ndarray:
        """
        Searches all the pairs within `radius` between `centers`
        and ``coords``
        ``coords`` are the already initialized coordinates in the tree
        during :meth:`set_coords`.
        ``centers`` are wrapped around the primary unit cell
        if PBC is desired. Minimum image convention (PBC) is
        activated if the `box` argument is provided during
        class initialization
        Parameters
        ----------
        centers: array_like (N,3)
          coordinate array to search for neighbors
        radius: float
          maximum distance to search for neighbors.
        Returns
        -------
        pairs : array
          all the pairs between ``coords`` and ``centers``
        Note
        ----
        This method constructs another tree from the ``centers``
        and queries the previously built tree (built in
        :meth:`set_coords`)
        """
        if not self._built:
            raise RuntimeError('Unbuilt tree. Run tree.set_coords(...)')
        centers = np.asarray(centers)
        if centers.shape == (self.dim, ):
            centers = centers.reshape((1, self.dim))
        # Sanity check
        if self.pbc:
            if self.cutoff is None:
                raise ValueError(
                    "Cutoff needs to be provided when working with PBC.")
            if self.cutoff < radius:
                raise RuntimeError('Set cutoff greater or equal to the radius.')
            # Bring all query points to the central cell
            wrapped_centers = apply_PBC(centers, self.box)
            other_tree = cKDTree(wrapped_centers, leafsize=self.leafsize)
            pairs = other_tree.query_ball_tree(self.ckdt, radius)
            pairs = np.array([[i, j] for i, lst in enumerate(pairs) for j in lst],
                                   dtype=np.intp)
            if pairs.size > 0:
                pairs[:, 1] = undo_augment(pairs[:, 1],
                                             self.mapping,
                                             len(self.coords))
        else:
            other_tree = cKDTree(centers, leafsize=self.leafsize)
            pairs = other_tree.query_ball_tree(self.ckdt, radius)
            pairs = np.array([[i, j] for i, lst in enumerate(pairs) for j in lst],
                                   dtype=np.intp)
        if pairs.size > 0:
            pairs = unique_rows(pairs)
        return pairs